Interpretability of Time Series Analysis with DeepLearning Overview and Tutorial

Jörg Simon, 30.April 2020

About me

- PhD on using DeepLearning to detect Human Factors from BioSignals
- Prof. Eduardo Veas and Herbert Danzinger
- Sometimes very Sparse Data!
- Inspired to use interpretability results to change the training process itself.

Ressources

- <u>https://github.com/grazai/xai-tutorial-april-2020</u>
- <u>http://projector.tensorflow.org/</u>
- <u>https://distill.pub/2016/misread-tsne/</u>
- Karpathy et al. 2015: <u>https://arxiv.org/pdf/</u> 1506.02078.pdf
- <u>https://distill.pub/2019/memorization-in-rnns/</u>
- <u>https://github.com/HendrikStrobelt/LSTMVis</u>

Ji

* Ji

*fi

*fi

* Ji

Time Series What is that?

Comparison of a statistical structure statistics

Cardina and an other

College and All Articles and

March and a state of the state

Interesting to the second

Time Series
What is that?

- Audio
 - Fixed sampling frequency + start point
 - Date, 20Hz, [0.532, 1.103, 0.765, 0.111, 0.998]
 - Spectogram: time bins

point 55, 0.111, 0.998]

Parallel Bars

(b)

Time Series What is that?

- Audio
- Video
 - Audio +
 - 4D Tensor: [Timesteps, (Color-)Channels, Width, Height]

— Closing price — Adjusted closing price

Time Series What is that?

- Audio
- Video
- Stock Data

$$M = \begin{bmatrix} 100 & 110 & 82 & 13 \\ 23:10 & 23:11 & 23:15 & 23: 12 \end{bmatrix}$$

32 32 :16 23:20]

BUT NGear

HAM NGear

BUT rThrottlePedal

HAM **rThrottlePedal**

BUT pBrakeF

HAM pBrakeF

Time Series What is that?

- Audio
- Video

- Stock Data
- Car Telemetry

	[100	110	82	132	32
M =	10	20	112	32	2
	300	210	212	13	320
	300	410	382	502	244
		•••	•••	•••	

Time Series What is that?

- Audio
- Video
- Stock Data
- Car Telemetry
- Speech (= audio with assumed structure)

surrender.

animated by the same desire.

smile: "I meant merely to say what I said."

С	h a	L I	•		S	t	r	;																																						
i	f	(b	U	f	р		1	1	(1	e	n				Θ)			L		(1 (e	n	2	•	1	٢	e	m	a i	n))								
	r e	t t	: L	l r	n		E	R	R		P 1	F	2 (-	E	I	N N	A	L)	;																									
1	•	0) f	1	t	h	е		С	u	r r	. 6	e n	t	1	У	1	. 11	p	1	e	m	е	n	t	e	d	5	s t	: r	i	n	g		fi	e	1	d :	s,		P	A	ΤН	ΜA	х	
	•	0	i e	: f	1	n	e	s		t	hε	2	1	0	n	g	8 5	t		٧	а	1	i	d		1 (e	n g	, t	: h		Г				-				-	-	-	-			
	•	1				_	_		_					_		_		-			_					_					_															

Time Series What is that?

- Audio
- Video
- Stock Data
- Car Telemetry
- Speech (= audio with assumed structure)
- Text
- ... many more

Time Series Unit of Analysis

- from the future
 - Next word in a unfinished sentence
 - Stocks going up or down
 - Steering angle of a car

• In Time Series, the unit of analysis is a set of data from the past, and you want to predict data

Time Series Unit of Analysis

- You might also just reason what a specific Time Series is about (classification)
 - Sentiment in a text
 - Emotion encoded within a ECG
 - Parse Tree of a Text

Time Series Unit of Analysis

- from the future
 - Next word in a unfinished sentence
 - Stocks going up or down
 - Steering angle of a car
- You might also just reason what a specific Time Series is about (classification) •
 - Sentiment in a text
 - Emotion encoded within a ECG
 - Parse Tree of a Text

• In Time Series, the unit of analysis is a set of data from the past, and you want to predict data

Time Series What doe the model model?

- In all domains with all data usually time series models try to model a transition to a new event given the current events
- Markov Models
 - Transition Probability
- DeepLearning: Gates
 - Influence Probability + Morphing
 - (LSTMs, WaveNets, Transformers)

Time Series What doe the model model?

- new event given the current events
- What is an event?
 - Easier (maybe):
 - NLP: Words (Embeddings), Sentences (Biases)
 - Genomes (Embeddings)
 - Harder:
 - General Sensor Data

• In all domains with all data usually time series models try to model a transition to a

Time Series What doe the model model?

- In all domains with all data usually time series models try to model a transition to a new event given the current events
 - Harder:
 - General Sensor Data
 - Single Data Points are taken as Events: This includes all the noise as event data, and is maybe not distinguishable to real events
 - Classical Solutions: Sliding windows or other transformations upfront
 - DeepLearning: Embeddings and Encoders

Time Series Interpretability

- Two units of Analysis:
 - Semantics of the Encoding of Events
 - Influence of past events for predicting new events

- There are model agnostic methods, I do not talk about them (yet)

- RNNs: LSTMs, GRUs, ...
- Auto-Encoders
- Temporal Convolution Model (TCM), WaveNet (Gated non-overlapping) Convolutions)
- Transformers (Multi-Head-Attention Mechanisms {aka. a lot of Gates})
- Hybrids: We also look at LSTM+Encoders in this talk

- RNNs: LSTMs, GRUs, ...

• Auto-Encoders

encoder

use specific aspects of the insides of models to allow interpretability

- Temporal Convolution Network (TCN),
- WaveNet (Gated non-overlapping Convolutions) lacksquare

• The interpretability methods I talk about are **model dependent**. That means they

Output Dilation = 8 Hidden Layer Dilation = Hidden Layer Dilation = 2Hidden Layer Dilation = 1

Input

 The interpretability methods I talk about are model dependent. That means they use specific aspects of the insides of models to allow interpretability

 Transformers (Multi-Head-Attention Mechanisms {aka. a lot of Gates})

Figure 1: The Transformer - model architecture.

- RNNs: LSTMs, GRUs, ...
- Auto-Encoders
- Temporal Convolution Network (TCN), WaveNet (Gated non-overlapping) Convolutions)
- Transformers (Multi-Head-Attention Mechanisms {aka. a lot of Gates})
- Hybrids: We also look at LSTM+Encoders in this talk

- RNNs: LSTMs, GRUs, ...
- Auto-Encoders
- Temporal Convolution Network (TCN), WaveNet (Gated non-overlapping) Convolutions)
- Transformers (Multi-Head-Attention Mechanisms {aka. a lot of Gates})
- Hybrids: We also look at LSTM+Encoders in this talk

Recurrent Neural Networks (RNN) Quick Recap

$$\boldsymbol{a}^{(t)} = \boldsymbol{b} + \boldsymbol{W} \boldsymbol{h}^{(t-1)} + \boldsymbol{U} \boldsymbol{x}^{(t)}$$

$$oldsymbol{h}^{(t)} = anh(oldsymbol{a}^{(t)})$$

$$\boldsymbol{o}^{(t)} = \boldsymbol{c} + \boldsymbol{V} \boldsymbol{h}^{(t)}$$

$$\hat{\boldsymbol{y}}^{(t)} = \operatorname{softmax}(\boldsymbol{o}^{(t)}) \tag{10.6}$$

From: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

From: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$

From: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_t)$$

From: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

$C_t = f_t * C_{t-1} + i_t * C_t$

From: <u>https://colah.github.io/posts/2015-08-Understanding-LSTMs/</u>

$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$ $h_t = o_t * \tanh\left(C_t\right)$

Demo Time

https://github.com/grazai/xai-tutorial-april-2020

Outlook Probable next Talks

- LRP by Ilija
- Finish LSTM:
 - Embeddings
 - LRP for LSTM
- Convolutions and Time (TCN, WaveNet)
- Transformers & Attention Mechanisms
- DeepFeature
- ReMIX

Thanks for the Attention

We will continue for an Q&A in discord (we will post the link in the twitch chat)

